Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inhal Toxicol ; 36(1): 31-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261520

RESUMO

BACKGROUND: Lysosomal ion channels are proposed therapeutic targets for a number of diseases, including those driven by NLRP3 inflammasome-mediated inflammation. Here, the specific role of the lysosomal big conductance Ca2+-activated K+ (BK) channel was evaluated in a silica model of inflammation in murine macrophages. A specific-inhibitor of BK channel function, paxilline (PAX), and activators NS11021 and NS1619 were utilized to evaluate the role of lysosomal BK channel activity in silica-induced lysosomal membrane permeabilization (LMP) and NLRP3 inflammasome activation resulting in IL-1ß release. METHODS: Murine macrophages were exposed in vitro to crystalline silica following pretreatment with BK channel inhibitors or activators and LMP, cell death, and IL-1ß release were assessed. In addition, the effect of PAX treatment on silica-induced cytosolic K+ decrease was measured. Finally, the effects of BK channel modifiers on lysosomal pH, proteolytic activity, and cholesterol transport were also evaluated. RESULTS: PAX pretreatment significantly attenuated silica-induced cell death and IL-1ß release. PAX caused an increase in lysosomal pH and decrease in lysosomal proteolytic activity. PAX also caused a significant accumulation of lysosomal cholesterol. BK channel activators NS11021 and NS1619 increased silica-induced cell death and IL-1ß release. BK channel activation also caused a decrease in lysosomal pH and increase in lysosomal proteolytic function as well as a decrease in cholesterol accumulation. CONCLUSION: Taken together, these results demonstrate that inhibiting lysosomal BK channel activity with PAX effectively reduced silica-induced cell death and IL-1ß release. Blocking cytosolic K+ entry into the lysosome prevented LMP through the decrease of lysosomal acidification and proteolytic function and increase in lysosomal cholesterol.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Tetrazóis , Tioureia/análogos & derivados , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/metabolismo , Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Colesterol
2.
FASEB J ; 38(1): e23350, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071600

RESUMO

Lung diseases characterized by type 2 inflammation are reported to occur with a female bias in prevalence/severity in both humans and mice. This includes previous work examining multi-walled carbon nanotube (MWCNT)-induced eosinophilic inflammation, in which a more exaggerated M2a phenotype was observed in female alveolar macrophages (AMs) compared to males. The mechanisms responsible for this sex difference in AM phenotype are still unclear, but estrogen receptor (ER) signaling is a likely contributor. Accordingly, male AMs downregulated ERα expression after MWCNT exposure while female AMs did not. Thus, ER antagonist Fulvestrant was administered prior to MWCNT instillation. In females, Fulvestrant significantly attenuated MWCNT-induced M2a gene expression and eosinophilia without affecting IL-33. In males, Fulvestrant did not affect eosinophil recruitment but reduced IL-33 and M2a genes compared to controls. Regulation of cholesterol efflux and oxysterol synthesis is a potential mechanism through which estrogen promotes the M2a phenotype. Levels of oxysterols 25-OHC and 7α,25-OHC were higher in the airways of MWCNT-exposed males compared to MWCNT-females, which corresponds with the lower IL-1ß production and greater macrophage recruitment previously observed in males. Sex-based changes in cholesterol efflux transporters Abca1 and Abcg1 were also observed after MWCNT exposure with or without Fulvestrant. In vitro culture with estrogen decreased cellular cholesterol and increased the M2a response in female AMs, but did not affect cholesterol content in male AMs and reduced M2a polarization. These results reveal the modulation of (oxy)sterols as a potential mechanism through which estrogen signaling may regulate AM phenotype resulting in sex differences in downstream respiratory inflammation.


Assuntos
Pulmão , Nanotubos de Carbono , Feminino , Masculino , Humanos , Animais , Camundongos , Pulmão/metabolismo , Interleucina-33/metabolismo , Nanotubos de Carbono/toxicidade , Caracteres Sexuais , Fulvestranto , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Camundongos Endogâmicos C57BL
3.
Biomolecules ; 13(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136603

RESUMO

Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.


Assuntos
Imipramina , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Imipramina/farmacologia , Colesterol/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Glicerofosfolipídeos/metabolismo
5.
Eur J Cell Biol ; 102(2): 151310, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934670

RESUMO

Silicosis is considered an irreversible chronic inflammatory disease caused by the inhalation of crystalline silica (cSiO2). The cycle of inflammation that drives silicosis and other particle-caused respiratory diseases is mediated by NLRP3 inflammasome activity in macrophages resulting in the release of IL-1ß. Lysosomal membrane permeability (LMP) initiated by inhaled particles is the key regulatory step in leading to NLRP3 activity. In addition to its role in LMP, the lysosome is crucial to cellular cholesterol trafficking. Lysosomal cholesterol has been demonstrated to regulate LMP while cationic amphiphilic drugs (CADs) reduce cholesterol trafficking from lysosomes and promote endolysosomal cholesterol accumulation as seen in Niemann Pick disease. Using a bone marrow derived macrophage (BMdM) model, four CADs were examined for their potential to reduce cSiO2-induced inflammation. Here we found that FDA-approved CAD drugs imipramine, hydroxychloroquine, fluvoxamine, and fluoxetine contributed to reduced LMP and IL-1ß release in cSiO2 treated BMdM. These drugs inhibited lysosomal enzymatic activity of acid sphingomyelinase, decreased lysosomal proteolytic function, and increased lysosomal pH. CADs also demonstrated a significant increase in lysosomal-associated free cholesterol. Increased lysosomal cholesterol was associated with a significant reduction in cSiO2 induced LMP and IL-1ß release. In contrast, reduced lysosomal cholesterol significantly exacerbated cSiO2-induced IL-1ß release and reduced the protective effect of CADs on IL-1ß release following cSiO2 exposure. Taken together, these results suggest that CAD modification of lysosomal cholesterol may be used to reduce LMP and cSiO2-induced inflammation and could prove an effective therapeutic for silicosis and other particle-caused respiratory diseases.


Assuntos
Dióxido de Silício , Silicose , Humanos , Dióxido de Silício/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Colesterol/química , Colesterol/farmacologia , Lisossomos
6.
Front Toxicol ; 5: 1112822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860548

RESUMO

Inhalation of crystalline silica has been well documented to cause pulmonary inflammation and lung disease such as silicosis. Respirable silica particles deposit in the lungs and are phagocytosed by alveolar macrophages. Subsequently, phagocytosed silica remains undegraded within lysosomes causing lysosomal damage known as phagolysosomal membrane permeability (LMP). LMP can trigger the assembly of the NLRP3 inflammasome resulting in release of inflammatory cytokines that contribute to disease. In order to better understand the mechanisms of LMP this study used murine bone marrow derived macrophages (BMdM) as a cellular model to investigate the mechanism of silica-induced LMP. Reduction of lysosomal cholesterol in bone marrow derived macrophages with 18:1 phosphatidylglycerol (DOPG) liposome treatment increased silica-induced LMP and IL-1ß release. Conversely, increasing lysosomal and cellular cholesterol with U18666A reduced IL-1ß release. Co-treatment of bone marrow derived macrophages with 18:1 phosphatidylglycerol and U18666A resulted in a significant reduction of the effects of U18666A on lysosomal cholesterol. Phosphatidylcholine 100-nm liposome model systems were used to examine the effects of silica particles on lipid membrane order. Time-resolved fluorescence anisotropy of the membrane probe, Di-4-ANEPPDHQ, was used to determine changes to membrane order. Silica increased lipid order that was attenuated by inclusion of cholesterol in the phosphatidylcholine liposomes. These results demonstrate that increased cholesterol can attenuate silica-induced membrane changes in liposomes and cell models, while decreasing cholesterol exacerbates silica-induced membrane changes. Selective manipulation of lysosomal cholesterol may be a way of attenuating lysosomal disruption and preventing silica-induced chronic inflammatory disease progression.

7.
Toxicol Appl Pharmacol ; 461: 116400, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702314

RESUMO

Alveolar macrophages (AM) are integral to maintaining homeostasis within the lungs following exposure to inhaled particles. However, due to the high animal number requirements for in vitro research with primary AM, there remains a need for validated cell models that replicate alveolar macrophages in form and function to better understand the mechanisms that contribute to particle-induced inflammation and disease. A novel, easily adaptable, culture model that facilitates the continued expansion of murine alveolar macrophages for several months, termed murine ex vivo cultured AM (mexAM) has been recently described. Therefore, the present work evaluated the use of mexAMs as a suitable model for primary AM interactions with nano- and micro-sized particles. mexAM displayed a comparable profile of functional phenotype gene expression as primary AM and similar particle uptake capabilities. The NLRP3 inflammasome-driven IL-1ß inflammatory response to crystalline silica and various nanoparticles was also assessed, as well as the effects of cationic amphiphilic drugs to block particle-induced inflammation. For all endpoints, mexAM showed a comparable response to primary AM. Altogether, the present work supports the use of mexAM as a validated replacement for primary AM cultures thereby reducing animal numbers and serving as an effective model for mechanistic investigation of inflammatory pathways in particle-induced respiratory disease.


Assuntos
Pulmão , Macrófagos Alveolares , Camundongos , Animais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Dióxido de Silício/química
8.
Colloids Surf B Biointerfaces ; 217: 112625, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35738078

RESUMO

Inhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge. The results demonstrate that NFS content is the primary determinant of membrane disruption causing red blood cell lysis and changes in lipid order in zwitterionic, but not in negatively charged liposomes. NFS-rich silica strongly and irreversibly adsorbs zwitterionic self-assembled phospholipid structures. This selective interaction is corroborated by density functional theory and supports the hypothesis that NFS recognize membrane epitopes that exhibit a positive quaternary amino and negative phosphate group. These new findings define a new paradigm for deciphering particle-biomembrane interactions that will support safer design of materials and what types of treatments might interrupt particle-biomembrane interactions.


Assuntos
Silanos , Dióxido de Silício , Epitopos , Silanos/química , Dióxido de Silício/química , Propriedades de Superfície
9.
J Immunol ; 208(1): 110-120, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819391

RESUMO

The majority of lung diseases occur with a sex bias in terms of prevalence and/or severity. Previous studies demonstrated that, compared with males, female mice develop greater eosinophilic inflammation in the airways after multiwalled carbon nanotube (MWCNT) exposure. However, the mechanism by which this sex bias occurs is unknown. Two immune cells that could account for the sex bias are type II innate lymphoid cells (ILC2s) and alveolar macrophages (AMs). In order to determine which immune cell type was responsible for MWCNT-induced airway eosinophil recruitment and subsequent sex differences in inflammation and disease, male and female C57BL/6 mice were exposed to MWCNTs (2 mg/kg) via oropharyngeal aspiration, and the respiratory immune response was assessed 7 d later. Greater eosinophilia and eotaxin 2 levels were observed in MWCNT-treated females and corresponded with greater changes in airway hyperresponsiveness than those in MWCNT-treated males. In MWCNT-treated females, there was a significant increase in the frequency of ILC2s within the lungs compared with control animals. However, depletion of ILC2s via α-CD90.2 administration did not decrease eosinophil recruitment 24 h and 7 d after MWCNT exposure. AMs isolated from control and MWCNT-treated animals demonstrated that M2a macrophage phenotype gene expression, ex vivo cytokine production, and activation of (p)STAT6 were upregulated to a significantly greater degree in MWCNT-treated females than in males. Our findings suggest that sex differences in AM phenotype development, not ILC2 signaling, are responsible for the observed female bias in eosinophilic inflammation after MWCNT inhalation.


Assuntos
Eosinófilos/imunologia , Inflamação/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Caracteres Sexuais , Animais , Diferenciação Celular , Quimiocina CCL24/metabolismo , Citocinas/metabolismo , Exposição Ambiental/efeitos adversos , Feminino , Imunidade Inata , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/efeitos adversos , Transdução de Sinais , Células Th2/imunologia
10.
Inflammation ; 45(2): 677-694, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34655011

RESUMO

Acute and chronic inflammation are vital contributing factors to pulmonary diseases which can be triggered by exposure to occupational and man-made particles; however, there are no established treatments. One potential treatment shown to have anti-inflammatory capabilities is the dietary supplement docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid found in fish oil. DHA's anti-inflammatory mechanisms are unclear for particle-induced inflammation; therefore, this study evaluated DHA as a prophylactic treatment for semi-acute and chronic particle-induced inflammation in vivo. Balb/c mice were fed a control or 1% DHA diet and exposed to dispersion media, an inflammatory multi-walled carbon nanotube (MWCNT), or crystalline silica (SiO2) either once (semi-acute) or once a week for 4 weeks (chronic). The hypothesis was that DHA will decrease pulmonary inflammatory markers in response to particle-induced inflammation. Results indicated that DHA had a trending anti-inflammatory effect in mice exposed to MWCNT. There was a general decrease in inflammatory signals within the lung lavage fluid and upregulation of M2c macrophage gene expression in the spleen tissue. In contrast, mice exposed to SiO2 while on the DHA diet significantly increased most inflammatory markers. However, DHA stabilized the phagolysosomal membrane upon prolonged treatment. This indicated that DHA treatment may depend upon certain inflammatory particle exposures as well as the length of the exposure.


Assuntos
Ácidos Docosa-Hexaenoicos , Pneumonia , Animais , Dieta , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Dióxido de Silício
11.
Micron ; 153: 103193, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929618

RESUMO

Biomaterials have a great potential to improve human health, however in vitro and in vivo studies are necessary to provide information on their efficacy and safety. This study reports on a comprehensive evaluation of core-shell electrospun fibers loaded with silver nanoparticles (Ag NP) where the delivery rate was controlled by different sizes of Ag NP and thermoresponsive poly(n-isopropylacrylamide) (PNIPAM) hydrogel particles. Fiber meshes also contain zinc oxide nanoparticles (ZnO NP), to improve pore structure for controlled release of Ag NP. In vitro cytotoxicity studies using cultured human A549 epithelial cells demonstrated that the ZnO NP component, which is known to cause cytotoxicity, of the fiber meshes did cause measurable cell death. In vitro antibacterial efficacy of the fiber meshes was shown with rapid and efficient growth inhibition in E. coli bacterial culture. Fiber meshes were implanted subcutaneously for up to 27 days in male and female C57BL/6 mice to evaluate the in vivo drug release and biocompatibility. Hyperspectral microscopy was used as an advanced tool to determine precise location of released Ag NP into the skin compared to the conventional tissue staining methods. Results suggested that Ag NP were continuously released over 27 days of implantation in mice. Hyperspectral imaging revealed that released Ag NP dispersed in the dermis of male mice, however, Ag NP accumulated in the hair follicles of female mice (Figure). Mice implanted with fiber meshes containing ZnO NP had better hair regrowth and wound healing, which was in contrast to in vitro cytotoxicity results. These findings suggest that these newly developed fiber meshes can have unique long-term release of drugs loaded in the fiber core and appear to be biocompatible. The differences in the sex-bias outcome suggest the opportunity for development of sex-specific drug delivery systems.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Preparações Farmacêuticas , Animais , Antibacterianos/farmacologia , Escherichia coli , Feminino , Masculino , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Caracteres Sexuais , Prata/farmacologia
12.
Inhal Toxicol ; 33(9-14): 285-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34715768

RESUMO

Inhalation is a significant route of exposure to toxic chemicals for electronic waste (e-waste) workers, especially for those whose activities take place in the informal sector. However, there remains a dearth of research on the health effects produced by the hazardous dismantling of e-waste and associated outcomes and biological mechanisms that occur as a result of inhalation exposure. This contemporary review highlights a number of the toxicological and epidemiological studies published on this topic to bring to light the many knowledge gaps that require further research, including in vitro and ex vivo investigations to address the health outcomes and underlying mechanisms of inhaled e-waste-associated pulmonary disease.


Assuntos
Resíduo Eletrônico , Humanos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise
13.
Methods Appl Fluoresc ; 9(3)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33973872

RESUMO

With the use of engineered nano-materials (ENM) becoming more prevalent, it is essential to determine potential human health impacts. Specifically, the effects on biological lipid membranes will be important for determining molecular events that may contribute to both toxicity and suitable biomedical applications. To better understand the mechanisms of ENM-induced hemolysis and membrane permeability, fluorescence lifetime imaging microscopy (FLIM) was performed on human red blood cells (RBC) exposed to titanium dioxide ENM, zinc oxide ENM, or micron-sized crystalline silica. In the FLIM images, changes in the intensity-weighted fluorescence lifetime of the lipophilic fluorescence probe Di-4-ANEPPDHQ were used to identify localized changes to membrane. Time-resolved fluorescence anisotropy and FLIM of RBC treated with methyl-ß-cyclodextrin was performed to aid in interpreting how changes to membrane order influence changes in the fluorescence lifetime of the probe. Treatment of RBC with methyl-ß-cyclodextrin caused an increase in the wobble-in-a-cone angle and shorter fluorescence lifetimes of di-4-ANEPPDHQ. Treatment of RBC with titanium dioxide caused a significant increase in fluorescence lifetime compared to non-treated samples, indicating increased membrane order. Crystalline silica also increased the fluorescence lifetime compared to control levels. In contrast, zinc oxide decreased the fluorescence lifetime, representing decreased membrane order. However, treatment with soluble zinc sulfate resulted in no significant change in fluorescence lifetime, indicating that the decrease in order of the RBC membranes caused by zinc oxide ENM was not due to zinc ions formed during potential dissolution of the nanoparticles. These results give insight into mechanisms for how these three materials might disrupt RBC membranes and membranes of other cells. The results also provide evidence for a direct correlation between the size, interaction-available surface area of the nano-material and cell membrane disruption.


Assuntos
Membrana Eritrocítica/efeitos dos fármacos , Nanoestruturas/toxicidade , Polarização de Fluorescência/métodos , Corantes Fluorescentes/química , Hemólise/efeitos dos fármacos , Humanos , Microscopia de Fluorescência/métodos , Nanoestruturas/química , Tamanho da Partícula , Compostos de Piridínio/química , Dióxido de Silício/química , Dióxido de Silício/toxicidade , Titânio/química , Titânio/toxicidade , Óxido de Zinco/química , Óxido de Zinco/toxicidade , beta-Ciclodextrinas/farmacologia
14.
Part Fibre Toxicol ; 18(1): 16, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771183

RESUMO

BACKGROUND: A very pure multi-walled carbon nanotube (MWCNT) that was shown to have very low toxicity in vitro, was evaluated for lung and systemic effects and distribution following inhalation exposure. METHODS: B6C3F1/N mice were exposed to varying doses (0, 0.06, 0.2, and 0.6 mg/m3) of the (99.1% carbon) MWCNT by inhalation for 30 days (excluding weekends). Ten days following the last exposure, the lungs and spleen were harvested and processed for histology and immune cell population assessment. In addition, lung lavage cells and fluid were analyzed. Stimulated Raman scattering (SRS) was used to identify particles in the lungs, spleen, kidneys, liver, mediastinal and brachial lymph nodes, and olfactory bulb. Splenic tissue sections were stained with hematoxylin and eosin (H&E) for light microscopic histopathology assessment. Blood plasma was analyzed for cytokines and cathepsins. A section of the spleen was processed for RNA isolation and relative gene expression for 84 inflammation-related cytokines/chemokines. RESULTS: Following MWCNT exposure, particles were clearly evident in the lungs, spleens, lymph nodes and olfactory bulbs, (but not livers or kidneys) of exposed mice in a dose-dependent manner. Examination of the lavaged lung cells was unremarkable with no significant inflammation indicated at all particle doses. In contrast, histological examination of the spleen indicated the presence of apoptotic bodies within T cells regions of the white pulp area. Isolated splenic leukocytes had significant changes in various cells including an increased number of proinflammatory CD11b+Ly6C+ splenic cells. The gene expression studies confirmed this observation as several inflammation-related genes were upregulated particularly in the high dose exposure (0.6 mg/m3). Blood plasma evaluations showed a systemic down-regulation of inflammatory cytokines and a dose-dependent up-regulation of lysosomal cathepsins. CONCLUSIONS: The findings in the lungs were consistent with our hypothesis that this MWCNT exposure would result in minimal lung inflammation and injury. However, the low toxicity of the MWCNT to lung macrophages may have contributed to enhanced migration of the MWCNT to the spleen through the lymph nodes, resulting in splenic toxicity and systemic changes in inflammatory mediators.


Assuntos
Exposição por Inalação , Nanotubos de Carbono , Material Particulado/toxicidade , Pneumonia , Animais , Líquido da Lavagem Broncoalveolar , Pulmão , Camundongos , Camundongos Endogâmicos
15.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668885

RESUMO

Lysosomal membrane permeabilization (LMP) has been proposed to precede nanoparticle-induced macrophage injury and NLRP3 inflammasome activation; however, the underlying mechanism(s) of LMP is unknown. We propose that nanoparticle-induced lysosomal hyperpolarization triggers LMP. In this study, a rapid non-invasive method was used to measure changes in lysosomal membrane potential of murine alveolar macrophages (AM) in response to a series of nanoparticles (ZnO, TiO2, and CeO2). Crystalline SiO2 (micron-sized) was used as a positive control. Changes in cytosolic potassium were measured using Asante potassium green 2. The results demonstrated that ZnO or SiO2 hyperpolarized the lysosomal membrane and decreased cytosolic potassium, suggesting increased lysosome permeability to potassium. Time-course experiments revealed that lysosomal hyperpolarization was an early event leading to LMP, NLRP3 activation, and cell death. In contrast, TiO2- or valinomycin-treated AM did not cause LMP unless high doses led to lysosomal hyperpolarization. Neither lysosomal hyperpolarization nor LMP was observed in CeO2-treated AM. These results suggested that a threshold of lysosomal membrane potential must be exceeded to cause LMP. Furthermore, inhibition of lysosomal hyperpolarization with Bafilomycin A1 blocked LMP and NLRP3 activation, suggesting a causal relation between lysosomal hyperpolarization and LMP.


Assuntos
Membranas Intracelulares/fisiologia , Lisossomos/metabolismo , Potenciais da Membrana/fisiologia , Nanopartículas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Citosol/metabolismo , Feminino , Concentração de Íons de Hidrogênio , Inflamassomos/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Permeabilidade , Potássio/metabolismo , Reprodutibilidade dos Testes , Dióxido de Silício/toxicidade
16.
Inhal Toxicol ; 33(2): 41-54, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627009

RESUMO

Lysosomes offer a unique arrangement of degradative, exocytic, and signaling capabilities that make their continued function critical to cellular homeostasis. Lysosomes owe their function to the activity of lysosomal ion channels and transporters, which maintain concentration gradients of H+, K+, Ca2+, Na+, and Cl- across the lysosomal membrane. This review examines the contributions of lysosomal ion channels to lysosome function, showing how ion channel function is integral to degradation and autophagy, maintaining lysosomal membrane potential, controlling Ca2+ signaling, and facilitating exocytosis. Evidence of lysosome dysfunction in a variety of disease pathologies creates a need to understand how lysosomal ion channels contribute to lysosome dysfunction. For example, the loss of function of the TRPML1 Ca2+ lysosome channel in multiple lysosome storage diseases leads to lysosome dysfunction and disease pathogenesis while neurodegenerative diseases are marked by lysosome dysfunction caused by changes in ion channel activity through the TRPML1, TPC, and TMEM175 ion channels. Autoimmune disease is marked by dysregulated autophagy, which is dependent on the function of multiple lysosomal ion channels. Understanding the role of lysosomal ion channel activity in lysosome membrane permeability and NLRP3 inflammasome activation could provide valuable mechanistic insight into NLRP3 inflammasome-mediated diseases. Finally, this review seeks to show that understanding the role of lysosomal ion channels in lysosome dysfunction could give mechanistic insight into the efficacy of certain drug classes, specifically those that target the lysosome, such as cationic amphiphilic drugs.


Assuntos
Doenças Autoimunes/metabolismo , Canais Iônicos/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Autoimunes/patologia , Humanos , Inflamassomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Doenças Neurodegenerativas/patologia
17.
Inflamm Res ; 70(3): 359-373, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33566171

RESUMO

OBJECTIVE AND DESIGN: The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been reported to suppress inflammation. Pulmonary inflammation can be directly linked to exposure of various occupational and man-made particles leading to pulmonary diseases. Therapeutic treatments are lacking for particle-induced pulmonary inflammation. These studies evaluated DHA as a therapeutic treatment for semi-acute and chronic particle-induced pulmonary inflammation. METHODS: Balb/c mice were oropharyngeal instilled with hydrophobic multi-walled carbon nanotube (MWCNT) or hydrophilic crystalline silica (SiO2) either as one instillation (semi-acute) or once a week for 4 weeks (chronic). One week later, the mice were placed on either a control or 1% DHA-containing diet for 3 weeks (semi-acute) or 12 weeks (chronic). Mice were assessed for inflammatory signaling within the lung lavage fluid, impact on phagolysosomal membrane permeability, shifts of macrophage phenotype gene expression (M1, M2a, M2b, and M2c), and pulmonary histopathology. RESULTS: DHA increased pulmonary inflammatory markers and lung pathology when mice were exposed to SiO2. There were trending decreases of inflammatory markers for MWCNT-exposed mice with DHA treatment, however, mostly not statistically significant. CONCLUSION: The anti-inflammatory benefits of DHA treatment depend upon the type of inflammatory particle, magnitude of inflammation, and duration of treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/uso terapêutico , Inflamação/dietoterapia , Pneumopatias/dietoterapia , Animais , Células Cultivadas , Citocinas/imunologia , Feminino , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Pneumopatias/induzido quimicamente , Pneumopatias/imunologia , Pneumopatias/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Masculino , Camundongos Endogâmicos BALB C , Nanotubos de Carbono , Fenótipo , Dióxido de Silício
18.
J Toxicol Environ Health A ; 84(4): 152-172, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33148135

RESUMO

Inhalation of particles results in pulmonary inflammation; however, treatments are currently lacking. Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid shown to exhibit anti-inflammatory capabilities. The impact of DHA on particle-induced inflammation is unclear; therefore, the aim of this study was to examine the hypothesis that DHA downregulates macrophage inflammatory responses by altering phagolysosomal membrane permeability (LMP) and shifting macrophage phenotype. Isolated Balb/c alveolar macrophages (AM) were polarized into M1, M2a, M2b, or M2c phenotypes in vitro, treated with DHA, and exposed to a multi-walled carbon nanotube (MWNCT) or crystalline silica (SiO2). Results showed minimal cytotoxicity, robust effects for silica particle uptake, and LMP differences between phenotypes. Docosahexaenoic acid prevented these effects to the greatest extent in M2c phenotype. To determine if DHA affected inflammation similarly in vivo, Balb/c mice were placed on a control or 1% DHA diet for 3 weeks, instilled with the same particles, and assessed 24 hr following instillation. Data demonstrated that in contrast to in vitro findings, DHA increased pulmonary inflammation and LMP. These results suggest that pulmonary responses in vivo may not necessarily be predicted from single-cell responses in vitro.


Assuntos
Anti-Inflamatórios/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Material Particulado/toxicidade , Fagossomos/efeitos dos fármacos , Animais , Permeabilidade da Membrana Celular/fisiologia , Regulação para Baixo , Feminino , Lisossomos/fisiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagossomos/fisiologia
19.
Curr Res Toxicol ; 1: 42-47, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33336194

RESUMO

BACKGROUND: Multinucleated giant cells (MGC) are formed by fusion of macrophages in pathological conditions. These are often studied in the context of the foreign body response to biomaterial implants, but MGC formation is rarely assessed in response to inorganic particles in the lungs. Therefore, a major objective of this study was to quantitatively compare in vivo macrophage fusion resulting from exposure to a spectrum of micron- and nano-sized particles from both environmental and engineered origin, including crystalline silica, multiwalled carbon nanotubes, titanium nanobelts, and crocidolite asbestos. METHODS: Groups of C57Bl/6 mice were instilled with inorganic particles or PBS control. Lung cells were collected by lavage after one week for cell differentials, quantification of macrophage fusion, and microscopic observation of particle uptake. RESULTS: MGC were present in lungs of all mice exposed to particles; no MGC were found in control mice. Asbestos exposure resulted in significant macrophage fusion, which coincided with significantly increased total lavage cells and percent neutrophils. Microscopic observations show particle internalization in MGC and a unique case of potential heterotypic fusion of macrophages with neutrophils. CONCLUSION: MGC can form in the lungs of mice within a relatively short one-week time period after particle exposure. The number of MGC was sufficient for quantification and statistical analysis, indicating that MGC formation was more than simply a rare chance occurrence. Observations of particles within MGC warrants further investigation of MGC involvement in inflammation and particle clearance.

20.
Immunobiology ; 225(3): 151952, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517879

RESUMO

Macrophages fuse into multinucleated giant cells (MGC) in many pathological conditions. Despite MGC correlations with granulomas, their functional contribution to inflammation is relatively unknown. An in vitro mouse model of IL-4-induced bone marrow-derived macrophage fusion and microfiltration were used to generate enriched MGC and macrophage populations. Phenotypes were compared in response to well-known inflammatory stimuli, including lipopolysaccharide and crocidolite asbestos. Surface markers were assessed by flow cytometry: CD11b, CD11c, F4/80, and MHC II. Secreted cytokines were assessed by multiplex immunoassay: IFN-γ, IL-1ß, IL-6, TNF-α, IL-10, IL-13, and IL-33. Results show that MGC maintained macrophage surface protein expression but lost the ability to produce a cytokine response. This suggests a potentially beneficial role of MGC in isolating the host from a foreign body without contributing to excessive inflammation. This study and future research using other stimulants and environments are important to gaining a fundamental MGC cell biology understanding. This will inform approaches to controlling the foreign body response to particle exposure, medical implants, and many diseases associated with granulomas.


Assuntos
Biomarcadores , Células Gigantes/citologia , Células Gigantes/metabolismo , Fenótipo , Animais , Separação Celular/métodos , Células Cultivadas , Citocinas/biossíntese , Humanos , Imunofenotipagem , Macrófagos/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...